If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-25y+20=0
a = 6; b = -25; c = +20;
Δ = b2-4ac
Δ = -252-4·6·20
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{145}}{2*6}=\frac{25-\sqrt{145}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{145}}{2*6}=\frac{25+\sqrt{145}}{12} $
| 5g-4/6=g-2g/5 | | 36x^2+1=17 | | 12/3n=11/2 | | 5x−7=18 | | 2x÷3+4x=24 | | 6+(-7)n=34 | | 8w-6-7-4w=4w-1 | | 6+11x=-44= | | 55-2x=10=-7x | | 4(-8x+5)=32x-27 | | 2x+39=9x+38 | | 18/15=6/g | | Y3-4y-52=0 | | 2x-45=900 | | 5^x+3=125 | | (x^2)+2x+3=51 | | 8b+2b+b=180 | | X²+10x+50=0 | | 2x+6=11−3x | | x+4/5=0.2 | | 5p-8=3p=5 | | 4b+7b+b=180 | | 4b+2b+b=180 | | 4x+3=x+20 | | 5x+3=x*15 | | 52(b+3)=2b+9 | | 7x+19=−37 | | 4(x+13)=26 | | -2x+69=63 | | -1x+50=44 | | 0.7x+0.7=5.6 | | 5x(-5)=35 |